Question			Answer	Marks	Guidance
1	a		The material is elastic / strain is zero when stress is removed / returns to its original shape when force is removed / there is no plastic deformation It does not obey Hooke's law The loading and unloading graphs are different (AW)	B1 B1 B1	The term elastic / remove(d) / plastic must be spelled correctly to gain this mark Ignore 'polymeric' Not 'it is ductile and elastic' Allow: Stress is not proportional to strain / force is not proportional to extension Allow: It shows hysteresis / heat produced (when loaded and unloaded)
	b	i	$\begin{aligned} & \text { (breaking) stress }=\frac{16}{0.012 \times 0.018 \times 10^{-3}} \text { or } 7.41 \times 10^{7}(\mathrm{~Pa}) \\ & \text { strain }=\frac{7.41 \times 10^{7}}{7.1 \times 10^{10}} \text { or } 1.04 \times 10^{-3} \\ & \text { extension }=1.04 \times 10^{-3} \times 0.15 \\ & \text { extension }=1.6 \times 10^{-4}(\mathrm{~m}) \end{aligned}$ assumption: Hooke's law obeyed / elastic limit is not exceeded / not plastically deformed / (cross-sectional) area is the same / thickness is the same / width is the same / no 'necking' / material is brittle	C1 C1 A1 B1	Alternative: $\begin{aligned} & x=\begin{array}{l} F L \\ E A \end{array} \quad \text { (Any subject) } \\ & \text { extension }= \\ & \frac{16 \times 0.15}{7.1 \times 10^{10} \times\left(0.012 \times 0.018 \times 10^{-3}\right)} \\ & \text { extension }= \\ & 1.6 \times 10^{-4}(\mathrm{~m}) \end{aligned}$
		ii	$\begin{aligned} & \text { (breaking) stress }=\text { same } \\ & \frac{F}{\pi \times\left(0.60 \times 10^{-2}\right)^{2}}=7.41 \times 10^{7} \\ & \text { force }=8.4 \times 10^{3}(\mathrm{~N}) \end{aligned}$	C1 A1	Allow other correct methods Possible ecf from (b)(i)
			Total	9	

Question			Answers	Marks	Guidance
2	(a)		force constant $=$3.0 0.06\quad (Any subject)force constant $=50\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$	$\begin{aligned} & \text { M1 } \\ & \text { A0 } \end{aligned}$	Not 3.0/6.0 $=50\left(\mathrm{~N} \mathrm{~m}^{-1}\right)$ Note: There is no mark for the answer because it is given on the paper; the mark is for the working.
	(b)	(i)	$\begin{aligned} & \left(E_{\mathrm{i}}=\right) \frac{1}{2} \times 50 \times 0.06^{2} \text { or } 1 / 2 \times 3.0 \times 0.06 \text { or } 0.09(\mathrm{~J}) \\ & \left(E_{\mathrm{f}}=\right) 1 / 2 \times 50 \times 0.10^{2} \text { or } 1 / 2 \times 5.0 \times 0.10 \text { or } 0.25(\mathrm{~J}) \\ & \Delta E=0.25-0.09 \\ & \Delta E=0.16(\mathrm{~J}) \end{aligned}$	C1 C1 A1	Special case ${ }^{\prime 1} / 2 \times 50 \times(0.10-0.06)^{2}=0.04(\mathrm{~J})$ ' mark or ${ }^{1} / 2 \times 50 \times(0.12-0.08)^{2}=0.04(\mathrm{~J})$ ' scores 1
		(ii)	$\begin{aligned} & \text { tension in spring }=50 \times 0.10 \text { or tension in spring }=5.0(\mathrm{~N}) \\ & \text { net force }=5.0-3.0 \text { and mass of object }=3.0 / 9.81 \\ & a=2.0 /(0.3058 . .) \\ & a=6.5\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	C1 C1 A1	Special case: $5.0 /(3.0 / 9.81)=16.35\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$ scores 1 mark because of the first C1 mark Note: $a=16.35-9.81=6.5\left(4 \mathrm{~m} \mathrm{~s}^{-2}\right)$ scores full marks
			Total	7	

Question			Answer	Marks	Guidance
3	(a)		Material X It is a brittle material No plastic deformation / It is elastic / It returns to same length when stress / force is removed Material \mathbf{Y} It is a polymeric / polymer (material) It is elastic / It returns to same length when stress / force is removed X obeys Hooke's law / Y does not obey Hooke's law	B1 B1 B1 B1 B1	Use ticks on Scoris to show where the marks are awarded \mathscr{O} Brittle must be spelled correctly to gain the mark. Allow: rubber / 'elastic band' Allow: energy 'lost' (when unloaded)
	(b)		Place the 100 g mass on the spring / hang the 100 g mass from the spring Determine the extension / compression of the spring (using a ruler) force constant $=0.98(1) /$ extension	B1 B1 B1	Allow: $k=(0.1 \times 9.8) /$ extension Allow: $k=1.0(\mathrm{~N}) /$ extension
	(c)	(i)	$\begin{aligned} & F=k x \\ & F=50 \times 0.070 \quad \mid \quad F=3.5(\mathrm{~N}) \\ & a=3.5 / 0.180 \\ & \text { acceleration }=19\left(\mathrm{~m} \mathrm{~s}^{-2}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Answer to 3 sf is $19.4\left(\mathrm{~m} \mathrm{~s}^{-2}\right)$
		(ii)	$\begin{aligned} \text { average work done } & =\text { average force } \times \text { displacement } \\ & =1.75 \times 0.070(=0.1225) \\ \text { av rate of work done } & =0.1225 / 0.094 \\ \text { av rate of work done } & =1.3\left(\mathrm{~J} \mathrm{~s}^{-1}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C} 1 \\ & \mathrm{~A} 1 \end{aligned}$	Aternative (allow full credit for other correct methods) $\begin{aligned} & E=\frac{1}{2} \times 50 \times 0.070^{2}(=0.1225) \\ & \text { power }=0.1225 / 0.094 \\ & \text { power }=1.3\left(\mathrm{~J} \mathrm{~s}^{-1}\right) \end{aligned}$ C1
			Total	13	

Question			Expected Answers	Marks	Additional Guidance
4	a	I	Extension is proportional to force (applied as long as the elastic limit is not exceeded)	B1	Must use tick or cross on Scoris to show if the mark is awarded This B1 can only be scored when 'extension' is spelled correctly Note: If 'change in length' or ' Δ length' used instead of 'extension', then length must be spelled correctly Allow: stress \propto strain as BOD (stress or strain must be spelled correctly)
		ii	$\begin{aligned} & \mathrm{p} \rightarrow 10^{-12} \\ & \mathrm{n} \rightarrow 10^{-9} \\ & k=\frac{F}{x} \quad, \quad k=\frac{210 \times 10^{-12}}{0.16 \times 10^{-9}} \\ & \text { force constant }=1.3\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \text { or } 1.31\left(\mathrm{~N} \mathrm{~m}^{-1}\right) \end{aligned}$	C1 C1 A1	Possible ecf Allow: 1 mark for ' $210 / 0.16=1312.5$ ’
	b	i	$\begin{aligned} & E=\text { gradient } / E=\text { stress/strain (linear section) } \\ & E=\frac{70 \times 10^{6}}{0.8 \times 10^{-3}} \\ & E=8.8 \times 10^{10}(\mathrm{~Pa}) \text { or } 8.75 \times 10^{10}(\mathrm{~Pa}) \\ & \text { unit: } \mathrm{N} \mathrm{~m}^{-2} \text { or } \mathrm{Pa} \end{aligned}$	C1 A1 B1	Allow: An answer in the range (8.3 to 9.1) $\times 10^{10}(\mathrm{~Pa})$ Allow: 1 mark for an answer $8.75 \times 10^{\mathrm{n}}, \mathrm{n} \neq 10$ Note: This is an independent mark
		ii	$\begin{aligned} & \text { breaking stress }=6.0 \times 10^{7}(\mathrm{~Pa}) \\ & A=\frac{19}{6.0 \times 10^{7}}(\text { Any subject }) \\ & A=3.2 \times 10^{-7}\left(\mathrm{~m}^{2}\right) \text { or } 3.17 \times 10^{-7}\left(\mathrm{~m}^{2}\right) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: 1 mark $3.17 \times 10^{\mathrm{n}}\left(\mathrm{m}^{2}\right), \mathrm{n} \neq-7$ Note: No marks if breaking stress of $\underline{6.0} \times 10^{\mathrm{n}}$ is not used
			Total	9	

5	Expected Answers	Marks	Additional Guidance
a	\mathbf{X} \mathbf{Y} \checkmark \checkmark \checkmark	B1	All 3 ticks correctly placed for 1 mark
b(i)	Material is permanently deformed / longer when stress / force is removed (wtte)	B1	Note: The answer must make reference to stress or forces removed
b(ii)1	$\begin{aligned} & \text { (stress = force/area) } \\ & \text { force }=3.00 \times 10^{9} \times 1.02 \times 10^{-7} \\ & \text { force }=306(\mathrm{~N}) \text { or } 310(\mathrm{~N}) \end{aligned}$	$\begin{aligned} & \text { C1 } \\ & \text { A1 } \end{aligned}$	Allow: Any subject Allow: 2 marks for a bald 306 (N) or 310 (N)
b(ii)2	$\begin{aligned} & (E=\text { stress } / \text { strain }) \\ & \text { strain }=\frac{1.20 \times 10^{9}}{1.30 \times 10^{11}} \quad / \quad \text { strain }=9.23 \times 10^{-3} \\ & \text { extension }=9.23 \times 10^{-3} \times 0.500 \\ & \text { extension }=4.6(15) \times 10^{-3}(\mathrm{~m}) \end{aligned}$	C1 A1	Allow: $4.6 \times 10^{-3}, 4.61 \times 10^{-3}, 4.62 \times 10^{-3}$ Allow: 2 marks for a bald 4.6(15) $\times 10^{-3}(\mathrm{~m})$ Allow: 1 mark for using breaking stress of $3.0 \times 10^{9} \mathrm{~Pa}$; this gives an extension of 0.0115 (m) Alternative answer: $\begin{array}{ll} x=\left(1.20 \times 10^{9} \times 0.500\right) / 1.30 \times 10^{11} & \text { C1 } \quad \text { (Any subject) } \\ \text { extension }=4.6(15) \times 10^{-3}(\mathrm{~m}) & \text { A1 } \end{array}$
	Total	6	

