Q	Question		Answer	Marks	Guidance
1	а		The material is <u>elastic</u> / strain is zero when stress is <u>removed</u> / returns to its original shape when force is <u>removed</u> / there is no <u>plastic</u> deformation	B1	The term elastic / remove(d) / plastic must be spelled correctly to gain this mark lgnore 'polymeric' Not 'it is ductile and elastic'
			It does not obey Hooke's law	B1	Allow: Stress is not proportional to strain / force is not proportional to extension
			The loading and unloading graphs are different (AW)	B1	Allow: It shows hysteresis / heat produced (when loaded and unloaded)
	b	i	(breaking) stress = $\frac{16}{0.012 \times 0.018 \times 10^{-3}}$ or 7.41×10^{7} (Pa) strain = $\frac{7.41 \times 10^{7}}{7.1 \times 10^{10}}$ or 1.04×10^{-3} extension = $1.04 \times 10^{-3} \times 0.15$ extension = 1.6×10^{-4} (m) assumption: Hooke's law obeyed / elastic limit is not exceeded / not plastically deformed / (cross-sectional) area is the same / thickness is the same / width is the same / no 'necking' / material is brittle	C1 C1 A1	Alternative: $x = \frac{FL}{EA}$ (Any subject) C1 extension = $\frac{16 \times 0.15}{7.1 \times 10^{10} \times (0.012 \times 0.018 \times 10^{-3})}$ C1 extension = 1.6×10^{-4} (m) A1
		ii	(breaking) stress = same $\frac{F}{\pi \times (0.60 \times 10^{-2})^2} = 7.41 \times 10^7$	C1	Allow other correct methods Possible ecf from (b)(i)
			force = 8.4×10^3 (N)	A1 9	
			lotai	פ	

Q	uestic	on	Answers		Guidance	
2	(a)		force constant = $\frac{3.0}{0.06}$ (Any subject) force constant = 50 (N m ⁻¹)	M1 A0	Not 3.0/6.0 = 50 (N m ⁻¹) Note: There is no mark for the answer because it is given on the paper; the mark is for the working.	
	(b)	(i)	$(E_i =) \frac{1}{2} \times 50 \times 0.06^2$ or $\frac{1}{2} \times 3.0 \times 0.06$ or 0.09 (J)	C1		
			$(E_{\rm f} =) \frac{1}{2} \times 50 \times 0.10^2$ or $\frac{1}{2} \times 5.0 \times 0.10$ or 0.25 (J)	C1		
			$\Delta E = 0.25 - 0.09$			
			$\Delta E = 0.16 (J)$	A1	Special case ' $\frac{1}{2}$ × 50 × (0.10 - 0.06) ² = 0.04 (J)' mark or ' $\frac{1}{2}$ × 50 × (0.12 - 0.08) ² = 0.04 (J)' scores 1	
		(ii)	tension in spring = 50×0.10 or tension in spring = 5.0 (N)	C1		
			net force = $5.0 - 3.0$ and mass of object = $3.0/9.81$			
			a = 2.0/(0.3058)	C1		
			$a = 6.5 \text{ (m s}^{-2})$	A1	Special case: $5.0/(3.0/9.81) = 16.35 \text{ (m s}^{-2}) \text{ scores 1}$ mark because of the first C1 mark Note : $a = 16.35 - 9.81 = 6.5(4 \text{ m s}^{-2}) \text{ scores full marks}$	
			Total	7		

Q	Question		Answer		Guidance
3	(a)		Material X It is a <i>brittle</i> material No plastic deformation / It is elastic / It returns to same length when stress / force is removed	B1 B1	Use ticks on Scoris to show where the marks are awarded Brittle must be spelled correctly to gain the mark.
			Material Y It is a polymeric / polymer (material) It is elastic / It returns to same length when stress / force is removed	B1 B1	Allow: rubber / 'elastic band' Allow: energy 'lost' (when unloaded)
			X obeys Hooke's law / Y does not obey Hooke's law	B1	
	(b)		Place the 100 g mass on the spring / hang the 100 g mass from the spring	B1	
			Determine the extension / compression of the spring (using a ruler)	B1	
			force constant = 0.98(1)/extension	B1	Allow: $k = (0.1 \times 9.8)$ /extension Allow: $k = 1.0$ (N)/extension
	(c)	(i)	F = kx		
			$F = 50 \times 0.070$ / $F = 3.5$ (N) a = 3.5/0.180 acceleration = 19 (m s ⁻²)	C1 C1 A1	Answer to 3 sf is 19.4 (m s ⁻²)
		(ii)	average work done = $\underline{\text{average}}$ force × displacement = 1.75×0.070 (= 0.1225) av rate of work done = $0.1225/0.094$	C1	
			av rate of work done = $1.3 (J s^{-1})$	A1	Aternative (allow full credit for other correct methods) $E = \frac{1}{2} \times 50 \times 0.070^2 (= 0.1225)$ C1 power = 0.1225/ 0.094
					power = $0.12237 \cdot 0.094$ power = $1.3 \text{ (J s}^{-1})$
			Total	13	

Question		tion	Expected Answers	Marks	Additional Guidance
4	a	i	Extension is proportional to force (applied as long as the elastic limit is not exceeded)	B1	Must use tick or cross on Scoris to show if the mark is awarded ↑ This B1 can only be scored when 'extension' is spelled correctly Note: If 'change in length' or 'Δ length' used instead of 'extension', then length must be spelled correctly Allow: stress ∝ strain as BOD (stress or strain must be spelled correctly)
		ii	$p \to 10^{-12}$ $n \to 10^{-9}$ $k = \frac{F}{x} / k = \frac{210 \times 10^{-12}}{0.16 \times 10^{-9}}$ force constant = 1.3 (N m ⁻¹) or 1.31 (N m ⁻¹)	C1 C1	Possible ecf Allow: 1 mark for '210/0.16 =1312.5'
	b	i	$E = \text{gradient} / E = \text{stress/strain (linear section)}$ $E = \frac{70 \times 10^6}{0.8 \times 10^{-3}}$ $E = 8.8 \times 10^{10} \text{ (Pa) or } 8.75 \times 10^{10} \text{ (Pa)}$ unit: N m ⁻² or Pa	C1 A1 B1	Allow: An answer in the range $(8.3 \text{ to } 9.1) \times 10^{10}$ (Pa) Allow: 1 mark for an answer 8.75×10^{n} , $n \neq 10$ Note: This is an independent mark
		ii	breaking stress = 6.0×10^{7} (Pa) $A = \frac{19}{6.0 \times 10^{7}}$ (Any subject) $A = 3.2 \times 10^{-7}$ (m ²) or 3.17×10^{-7} (m ²)	C1 A1	Allow: 1 mark 3.17×10^n (m ²), n \neq -7 Note: No marks if breaking stress of $\underline{6.0} \times 10^n$ is not used

5	Expected Answers	Marks	Additional Guidance
а	X Y V V V V V V V V V V V V V V V V V V	B1	All 3 ticks correctly placed for 1 mark
b(i)	Material is permanently deformed / longer when stress / force is removed (wtte)	B1	Note : The answer must make reference to stress or forces removed
b(ii)1	(stress = force/area) force = $3.00 \times 10^9 \times 1.02 \times 10^{-7}$	C1	Allow: Any subject
	force = 306 (N) or 310 (N)	A1	Allow: 2 marks for a bald 306 (N) or 310 (N)
b(ii)2	(E = stress/strain) $\text{strain} = \frac{1.20 \times 10^9}{1.30 \times 10^{11}}$ / $\text{strain} = 9.23 \times 10^{-3}$ $\text{extension} = 9.23 \times 10^{-3} \times 0.500$	C1	
	extension = $4.6(15) \times 10^{-3}$ (m)	A1	Allow: 4.6×10^{-3} , 4.61×10^{-3} , 4.62×10^{-3} Allow: 2 marks for a bald $4.6(15) \times 10^{-3}$ (m) Allow: 1 mark for using breaking stress of 3.0×10^{9} Pa; this gives an extension of 0.0115 (m) Alternative answer:
			$x = (1.20 \times 10^9 \times 0.500)/1.30 \times 10^{11}$ C1 (Any subject) extension = $4.6(15) \times 10^{-3}$ (m) A1
	Total	6	